Neuromorphic Controls: From the dynamics of a cartpole to a lunar lander

Shreyan Banerjee ${ }^{1}$ [shreyan.banerjee@ucdconnect.ie], Vikram Pakrashi ${ }^{1}$ [vikram.pakrashi@ucd.ie], Aasifa Rounak ${ }^{\mathbf{1}}$ [aasifa.rounak@ucd.ie]
${ }^{1}$ UCD Centre for Mechanics, Dynamical Systems \& Risk Laboratory,
SFI Centre for Research Training in Foundations of Data Science

Introduction
- Neuromorphic architecture: A promising candidate for non von-
Neumann computation
Qse of spikes trains (impulses distributed spatio-temporally) for
processing as opposed to continuous time signals.
Low power computation with spiking neural networks(SNNs) for
AI.
Q SNNs for optimal and data-driven control: Application to cartpole
balancing and soft landing of a lunar lander.

Aim: The Research Question

Can SNNs provide acceptable performance for applications in conventional optimal and data-driven control techniques?

\square Python based simulation models for both cartpole and lunarlanders
\square For the cartpole balancing, standard linear quadratic regulator (LQR) is used but with a single spiking neuron as a feedback matrix multiplier.
\square For the lunar lander soft landing, deep Q learning (a version of reinforcement learning was used) with conventional artificial neural networks (ANNs) and SNNs to train the lander to execute soft landing on the given target area.

Control objective: To balance the pole on the cart for small perturbations about the unstable equilibrium position (UEP)

Achieved: Successful balancing with 1 spiking neuron based LQR feedback controller.

Control objective: To execute soft landing between the flags using three thrusters: left, right and main.

Achieved: Successful landing using Q learning and conventional non-spiking ANNs.

In progress: Learning to land using SNN based Q learning .

\square A single spiking neuron can provide acceptable transient and steady state characteristics for feedback control.
\square Implementing both the problems on a neuromorphic hardware can be the next step, to check for power benefits. \qquad

[1] Dingkun et al.,IEEE Tans. Ind. Ele 10.1109/TIE.2021.3095788 (2021) [2] Chen et al., Springerlink Machine
Learning., 10.1007/s10994-019-05849 Learning, 10.1007/s10994-019-05849-4

Acknowledgements

The authors wish to convey their sincere appreciation for the support extended by Science Foundation Ireland (SFI) Centre for Research Training (CRT) in Foundations of Data Science under Grant Number 16/RC/3872. Vikram Pakrashi would like to acknowledge: SFI MaREI Centre RC2302_2,
SFI NexSys project 21/SPP/3756, SFI ISFI NexSys project 21/SPP/3756, SFI

FORM Centre and SEAI funded | FORM Centre and $\begin{array}{l}\text { and } \\ \text { REMOTEWIND RDD } / 613 \text {. }\end{array}$ funded |
| :--- |

